
The AEGON Algebra

A Finite Semantic Algebra of Failure Classes for Deterministic

System Interpretation

Adrian Diamond
AAD Systems

adrian@aadsystems.com

Version 1.0
Written January 19, 2026

https://papers.aadsystems.com/aegon-algebra-v1

Abstract

Modern distributed systems exhibit unbounded scale and complexity, yet their observable
behaviors remain structurally constrained. This paper introduces the AEGON algebra, a fi-
nite semantic algebra over system failure modes, demonstrating that system behavior admits
a total deterministic classification independent of system size. We formalize a finite ontology
of failure classes, define a partial order over these classes, and show how policy actions can be
compiled from semantic classifications. The AEGON algebra provides a foundation for deter-
ministic system interpretation, policy generation, and operational reasoning without reliance on
probabilistic or heuristic models.

Contents

1 Structural Generators of the AEGON Algebra 3

2 Classification as Functorial Interpretation 3

3 Finite Semantic Closure of System Behavior 3

4 The Failure-Class Lattice and Thin Category Structure 4

5 Policy Compilation Semantics 4

6 Formal Semantic Examples 4
6.1 Example 6.1: Single-Regime Classification and Compilation 4
6.2 Example 6.2: Multi-Regime Join and Canonical Reconciliation 5
6.3 Example 6.3: Explicit Neutral Outcome (No-Action as a First-Class Result) 5

7 Minimal AEGON Policy DSL and JSON Bundle Target 5
7.1 Five-Construct Minimal Policy DSL (Sketch) . 5
7.2 DSL Example Compiling to JSON Policy Bundle . 5

8 Interpretive Remarks on Classification Totality and Semantic Neutrality 6

1

https://papers.aadsystems.com/aegon-algebra-v1

9 Conclusion 6

2

1 Structural Generators of the AEGON Algebra

Definition 1.1 (Failure Class). A failure class is a semantic atom representing a violated
structural invariant of a system.

Definition 1.2 (Failure-Class Ontology). Let F = {F0, F1, . . . , F13} be a finite, closed
ontology of failure classes, where F0 denotes the neutral (no-failure) class.

Definition 1.3 (Observation Space). Let O denote the space of normalized system obser-
vations (e.g., structured signals, derived invariants, or canonical payloads), where normalization
enforces representation invariance with respect to irrelevant operational variation. Elements of O
are assumed to be sufficient for semantic classification.

Remark 1.1. This paper covers (i) the AEGON cloud application (deterministic classifier),
and (ii) the AEGON compiler/language (policy compilation). These are distinct artifacts unified
by the same semantic algebra.

2 Classification as Functorial Interpretation

Definition 2.1 (Deterministic Classifier). A deterministic classifier is a total function

C : O → F

such that for identical o ∈ O, repeated evaluation yields identical output in F .
Definition 2.2 (Failure-Class Category). Define a category F whose objects are the failure

classes in F and whose morphisms represent semantic escalation relations (defined formally in §4).
Definition 2.3 (Functorial View of Classification). When O is regarded as a category O

of observations (with structure-preserving maps between observations), classification can be viewed
as a functor

C : O → F .

Corollary 2.1 (Repeatability). For all o ∈ O, C(o) is stable under re-evaluation: C(o) =
C(o) under all evaluation contexts.

Proof. Determinism is a definitional property of C.

3 Finite Semantic Closure of System Behavior

Theorem 3.1 (Finite Semantic Closure). System behavior (as represented in O) admits a
total deterministic classification into the finite ontology F , independent of system size.

Lemma 3.2 (Semantic Coverage Principle). If the failure-class ontology F is finite and
closed with respect to admissible observations in O, then the classifier C : O → F induces a
complete semantic interpretation of system state for the purposes of policy generation.

Proof. By totality of C and closure of F , every admissible observation maps to exactly one
policy-relevant semantic regime.

Proof. Since C : O → F is total and F is finite, every observation maps to exactly one class in
a finite codomain.

Corollary 3.1 (Bounded Interpretive Complexity). Even when operational state space
is unbounded, interpretive state space is bounded by |F |.

Proof. The classifier’s image is a subset of F .

3

4 The Failure-Class Lattice and Thin Category Structure

Definition 4.1 (Failure-Class Partial Order). Let ≤ be a partial order on F such that Fi ≤ Fj

means class Fj semantically dominates or escalates Fi.

Semantic Interpretation. The partial order ≤ does not encode temporal ordering, causality, or
probabilistic likelihood. Rather, Fi ≤ Fj expresses that the semantic regime Fj strictly dominates
or subsumes Fi with respect to system interpretation and policy relevance.

Definition 4.2 (Join-Semilattice (Policy-Relevant)). Assume (F,≤) admits binary joins
∨ (least upper bounds) whenever policy composition must reconcile multiple triggered regimes.

Lemma 4.1 (Thinness of the Failure-Class Category). The category F induced by (F,≤)
is thin: for any Fi, Fj ∈ F there exists at most one morphism Fi → Fj .

Proof. In a poset-category, Hom(Fi, Fj) is either empty or a singleton depending on whether
Fi ≤ Fj .

Remark 4.1. Thinness is the categorical formalization of no competing interpretations: for any
two failure classes, there exists at most one admissible semantic escalation path. This eliminates
ambiguity in regime dominance and ensures that reconciliation is canonical rather than heuristic.

5 Policy Compilation Semantics

Definition 5.1 (Policy Action Set). Let P be the set of policy actions (e.g., restrict rollout,
freeze control-plane, page on-call, isolate dependency, etc.).

Definition 5.2 (Policy Monoid). A policy monoid is a triple (P,⊕, e) where ⊕ is associative
policy composition and e is the identity (no-op) policy.

Proof. Associativity enables stable bundling; e ensures explicit “no action” is representable.
Definition 5.3 (Policy Compiler). A policy compiler is a deterministic map

Π : F → P

that assigns a canonical policy bundle to each failure class.
Theorem 5.1 (Determinism of Policy Compilation). The composed function Π◦C : O →

P is deterministic.
Proof. Composition of deterministic functions is deterministic.

6 Formal Semantic Examples

6.1 Example 6.1: Single-Regime Classification and Compilation

Let o ∈ O be an observation whose invariant-violations correspond to a unique regime Fk (e.g.,
Control Plane Saturation). Then:

C(o) = Fk, (Π ◦ C)(o) = Π(Fk).

Interpretation: the system resolves to one stable semantic regime; compilation emits one canon-
ical policy bundle.

4

6.2 Example 6.2: Multi-Regime Join and Canonical Reconciliation

Let o ∈ O trigger evidence consistent with two regimes Fa and Fb. If (F,≤) admits join:

C(o) = Fa ∨ Fb.

Compiled policy is:
Π(C(o)) = Π(Fa ∨ Fb).

Interpretation: join selects a unique least-dominating semantic regime (no ambiguity), and
compilation produces a single resolved policy.

6.3 Example 6.3: Explicit Neutral Outcome (No-Action as a First-Class Result)

If o violates no encoded invariants, define:

C(o) = F0, Π(F0) = e.

Interpretation: non-action is not absence of meaning; it is the meaning of semantic stability.

7 Minimal AEGON Policy DSL and JSON Bundle Target

Remark 7.1. This section is intentionally minimal: it demonstrates the “language → policy
bundle” idea without over-engineering the compiler.

7.1 Five-Construct Minimal Policy DSL (Sketch)

We define a minimal DSL with at most five constructs:

• C1: ON <FailureClass> (trigger)

• C2: DO <Action> (emit action)

• C3: WITH <Key=Value> (attach parameters)

• C4: TIER <Name> (capability gate)

• C5: END (close block)

7.2 DSL Example Compiling to JSON Policy Bundle

TIER pro

ON CONTROL_PLANE_SATURATION

DO freeze_control_plane

WITH window_minutes=30

DO page_oncall

WITH severity=high

END

Compiled JSON Bundle (Target):

5

{

"tier": "pro",

"on": "CONTROL_PLANE_SATURATION",

"actions": [

{ "name": "freeze_control_plane",

"params": { "window_minutes": 30 } },

{ "name": "page_oncall",

"params": { "severity": "high" } }

]

}

8 Interpretive Remarks on Classification Totality and Semantic
Neutrality

Remark 8.1 (Poset-as-Category View). Treating (F,≤) as a thin category formalizes semantic
dominance structurally rather than procedurally. No probabilistic scoring, confidence weighting,
or human arbitration is required to determine escalation.

Remark 8.2 (Policy Neutrality). The policy monoid admits a neutral element e representing
no action. Neutral outcomes are first-class semantic results, indicating system stability rather than
classifier failure.

9 Conclusion

The AEGON Algebra expresses a conceptual result: despite unbounded system scale, observable
behavior admits a finite deterministic semantic regime. By equipping failure classes with a par-
tial order (and joins when needed) and compiling semantic regimes into monoidal policy bundles,
AEGON supports stable interpretation and action generation without heuristics or learning.

References

[1] S. Mac Lane, Categories for the Working Mathematician, 2nd ed., Springer, 1998.

[2] AAD Systems (Adrian Diamond), The ECASM Algebra.
https://papers.aadsystems.com/ecasm-algebra

[3] AAD Systems (Adrian Diamond), AEGON Technical Documentation, v1.0.
https://egon.aadsystems.com/static/documentation.html

6

https://papers.aadsystems.com/ecasm-algebra
https://egon.aadsystems.com/static/documentation.html

	Structural Generators of the AEGON Algebra
	Classification as Functorial Interpretation
	Finite Semantic Closure of System Behavior
	The Failure-Class Lattice and Thin Category Structure
	Policy Compilation Semantics
	Formal Semantic Examples
	Example 6.1: Single-Regime Classification and Compilation
	Example 6.2: Multi-Regime Join and Canonical Reconciliation
	Example 6.3: Explicit Neutral Outcome (No-Action as a First-Class Result)

	Minimal AEGON Policy DSL and JSON Bundle Target
	Five-Construct Minimal Policy DSL (Sketch)
	DSL Example Compiling to JSON Policy Bundle

	Interpretive Remarks on Classification Totality and Semantic Neutrality
	Conclusion

